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Peer-Report Measures 

 

Prestige. To measure prestige participants rated all members of their task group on 

four items taken from the dominance-prestige scale questionnaires (Cheng, Tracy & Henrich, 

2010). The four items were: “Members of your group respect and admire them”, “Their 

unique talents and abilities are recognized by others in the group”, “They are considered an 

expert on some matters by members of the group”, “Members of your group seek his/her 

advice on a variety of matters”. We used an abridged version of the scale to reduce 

participant fatigue. Use of the abridged scale substantially increased the internal consistency 

of both measures of prestige and dominance in comparison to the full scale. The abridged 

scale had a strong correlation (𝜌𝜌 =.921, 𝛼𝛼 = .97) with the full scale that measured a subset of 

participants in classroom indicating that the measures captured the same variance. The 

measure had excellent internal consistency throughout the study. In time wave 1, 𝛼𝛼 = .88, 

wave 2 𝛼𝛼 = .89, wave 3 𝛼𝛼 = .88, and in wave 4 𝛼𝛼 = .90. 

 

Dominance. Participants rated all members of their task group on four items taken 

from the dominance-prestige scale questionnaires (Cheng, Tracy & Henrich, 2010). The four 

items were: “They enjoy having control over other members of the group”, “They often try to 

get their own way regardless of what others in the group may want”, “They are willing to use 

aggressive tactics to get their way”, “They try to control others rather than permit them to 

control them”. Again, use of the abridged scale substantially increased the internal 

consistency of both measures of prestige and dominance in comparison to the full scale. The 

abridged scale had a strong correlation (𝜌𝜌 =.939, 𝛼𝛼 = .93) with the full scale that measured a 

subset of participants in classroom indicating that the measures captured the same variance. 



The measure had excellent internal consistency throughout the study. In time wave 1, 𝛼𝛼 =

.82, wave 2 𝛼𝛼 = .86, wave 3 𝛼𝛼 = .91, and in wave 4 𝛼𝛼 = .93. 

 

Social Rank. As outlined in the current manuscript we used previously validated 

measures of social rank that predict the actual decision-making capacity of members within 

groups (Cheng et al., 2013).  The measure had adequate to good internal consistency 

throughout the study. In time wave 1, 𝛼𝛼 = .71, wave 2 𝛼𝛼 = .79, wave 3 𝛼𝛼 = .74, and in wave 

4 𝛼𝛼 = .68. 

 

Bivariate Correlations between Prestige, Dominance and Social Rank 

 

As with the partial correlation matrix, we specified a uniform prior on the space of 

bivariate correlation matrices. Estimation was carried out using R package Stan and we again 

used a NUTS sampler with 4 chains and 2000 iterations.  All parameters had above 1999 

effective samples and an 𝑅𝑅 � of 1.00, indicating appropriate model convergence. As shown in 

ESM Figure 1, bivariate correlations between prestige and social are positive and substantial 

at every wave. Bivariate correlations between dominance and social rank were again positive 

and substantial in the initial wave of measurement (ρ = 0.19, CI = [0.08, 0.30]). However, 

throughout the remainder of the study the correlation between dominance and social rank was 

negligible.  

 

Hierarchical Bayesian Continuous-Time Dynamic Modelling 

 

Hierarchical Bayesian continuous-time dynamic modelling was chosen to analyse the 

current data as it provides several advantages to more traditional discrete time or trajectory-



oriented models for longitudinal data (such as multi-level modelling and latent growth curve 

modelling).  Dynamic models comprise a broad range of modelling techniques that assess 

how processes function within subjects over time. These processes often follow a smooth 

trajectory, are sequentially dependent (i.e. autocorrelation/autoregression) and are guided by 

small levels of stochastic inputs (i.e. there is a small amount of randomness in changes over 

time). These processes also unfold over continuous time and modelling change over time in 

discrete time points can amount to a number of issues. Discrete time models assume that 

there are equal time intervals between points of measurement and, in most cases, this 

assumption is not satisfied, which can cause bias in parameter estimates (de Haan-Rietdijk, 

Voelkle, Keijsers, & Hamaker, 2017; Voelkle & Oud, 2013). These strict assumptions 

associated with equally spaced periods between measurements further hinder the 

generalizability of results as comparison between studies that have differently spaced time 

intervals is not easy. The use of continuous time models overcome these problems by 

naturally accounting for differing time intervals by explicitly incorporating time interval into 

the equation, thus estimating latent continuous time parameters and therefore assessing the 

behaviour of a given processes at any point in time (regardless of whether it is observed or 

not). Moreover, unlike other approaches, continuous time structural equation models (and 

other state-space models) parse informative unpredictable fluctuations in the trajectory of the 

process (innovation variance)—which may be useful for future predictions—from deviations 

that are not meaningful (measurement error) and do not offer any predictive value (Driver & 

Voelkle, 2018). For more comprehensive outlines of dynamic structural equation models see 

Asparouhov, Hamaker, & Muthén (2018) and for continuous time structural equation models 

see Driver, Oud, & Voelkle (2017) and Voelkle, Oud, Davidov, & Schmidt (2012) 

 



 Whilst continuous time modelling does overcome many issues relating to modelling 

longitudinal data, many approaches do not account for the potentially hierarchical nature of 

temporal processes. More traditional approaches (i.e. autoregressive cross-lagged panel 

models) often estimate a single set of fixed-parameter effects, which assume that the 

processes unfold in exactly the same way for all subjects. However, it is common for the 

intercept in dynamic models to vary between subjects and not accounting for the subject-

specific differences in the average level of a process may bias parameters within the model 

that are assessing the temporal dynamics (Hamaker, Kuiper, & Grasman, 2015). The current 

hierarchical Bayesian approach provides a middle ground between fixed-effects models and 

subject-specific models by estimating population distributions for model parameters (For a 

technical outline and mathematical description see Driver & Voelkle (2018). The present 

model simultaneously estimates the population distribution mean and variance, which serves 

as prior information and informs the sampling of the subject level parameters as hyperpriors. 

Hyperpriors are priors that reflect the expectations for the population distribution. Thus, the 

subject specific parameter estimates are joint-posterior population distributions that are 

conditional on a combination of the estimated population distribution, which fully accounts 

for between-subject differences, and the calculated likelihood of parameters being subject 

specific.  
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Figures 

 
Figure 1. Bayesian estimates of bivariate correlations between social rank, prestige and 
dominance at all waves during the study. Variable names are presented on the diagonal of the 
figure. The number associated with the variable names indicates the wave of observation (i.e. 
between wave 1 and 4). 
 
SR = Social Rank 
D = Dominance 
P = Prestige  
 


